
Journal of Engineering Mathematics 28: 227-240, 1994. 227
( 1994 Kluwer Academic Publishers. Printed in the Netherlands.

A method of domain decomposition for calculating the steady
flow past a cylinder

S.J.D. D'ALESSIO and S.C.R. DENNIS
University of Western Ontario, Department of Applied Mathematics, London, Ontario, Canada N6A 5B7

Received 19 March 1993; accepted in revised form 9 September 1993

Abstract. For flow past a cylinder it is known that the vorticity is only significant in a thin boundary-layer adjacent
to the surface and within a parabolic wake far from the cylinder. To address this behaviour of the vorticity a
numerical method is implemented whereby the flow field is decomposed into two regions: an inner region to deal
with boundary-layer phenomena and an outer region to model wake phenomena. This method equally applies to
any cylinder cross section. The equations of motion are solved in each region and are matched at the boundary.
Numerical solutions have been carried out for the trial case of a circular cylinder and the agreement with existing
results is good.

1. Introduction

The steady flow of a viscous incompressible fluid past a circular cyclinder has received much
attention. Numerical work on this problem includes that of Thom [1], Kawaguti [2], Keller
and Takami [3], Takami and Keller [4], Dennis and Chang [5, 6], Nieuwstadt and Keller [7],
Dennis [8] and Fornberg [9] to mention a few. One of the major difficulties encountered in
obtaining accurate numerical solutions of the Navier-Stokes equations lies in the behaviour
of the vorticity as illustrated in Fig. 1. When the equations are expressed in terms of the
modified polar co-ordinates (, 0), where e = ln(r/a) and a is the radius of the cylinder, the
vorticity is concentrated in a thin boundary-layer on the surface of thickness = 0(1 /VR)
and within a diminishing wake far from the cylinder having a width = O(e-' 2/V1). A
further complication is the fact that the boundary-layer and wake thicknesses depend on the
Reynolds number, R.

One approach of accommodating the vorticity behaviour would be to utilize grid
reduction. In the far wake, grid reduction in the 0 direction must be implemented, whereas
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Fig. 1. The flow field for 0 in modified polar co-ordinates.

__



228 S.J.D. D'Alessio and S.C.R. Dennis

near the cylinder the boundary-layer warrants grid reduction in the 5 direction. Young [10]
introduced a successful technique of performing grid reduction in the far wake. He chose to
halve the grid size in the 0 direction within the wake each time the breadth of the wake
diminished by a factor of two. This leaves the same number of grid points in the wake
region. Wherever a grid reduction was initiated, interpolation was used to obtain values at
the new grid points on the half grid. As many as three grid reductions were undertaken for
moderate Reynolds numbers.

In the present method domain decomposition is used. The flow field is divided into two
regions: an inner region dealing with boundary-layer phenomena and an outer region
designed to model wake phenomena. The idea of decomposing the flow field into two
regions was proposed by Dennis [8]. In the outer region a change of co-ordinate variables
suggested by the asymptotic solution of Imai [11] is introduced. We let

z = e - /2 (1)

VRe'/ 2 0 0

2-/ 2kz ' (2)

where

k= j\2. (3)

Advantages of working in terms of these variables are two fold. Firstly, the otherwise infinite
interval ( *, -) of is now mapped to the finite interval (z*,0) with z*= exp(-r*/2)
denoting the boundary separating the two regions. This allows the entire flow field to be
considered, which is seldom done in computational fluid dynamics. Secondly, the breadth of
the wake remains constant throughout the outer region by this choice of the variable k. This
is equivalent to stretching the narrowing wake and can be viewed as an analytical analog of
the grid reduction done by Young [10]. Consequently though, the finite range (-Ir, rr) of 0
also gets stretched to the interval (-r/2kz, rr/2kz) and tends to the infinite interval (c, o) of
q as z-0. This technique is illustrated in Fig. 2 for the symmetrical case.

The boundary separating the two regions given by 5 = * (or z = z*) is permitted to move

z=z

Fig. 2. Domain decomposition of the flow field.
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according to the Reynolds number. Allowing this provides the necessary grid reduction in
the boundary-layer. Two formulae specifying its movement are given by

* = (4)

(5)

In the above, e* corresponds to the location of the boundary for some Reynolds number R0.
Equation (4) is based on boundary-layer theory as evidenced by the factor 1/ V while (5) is
suggested by wake theory.

The method is explained in detail in the following sections. Our main object is to describe
the basic mathematical analysis underlying the method. This is illustrated with numerical
tests which employ the well-known example of flow past a circular cylinder. However, the
method can be extended to a cylinder of any cross section. The results obtained are at low
Reynolds numbers, but they illustrate all the basic processes. In effect the method is a
numerical matching procedure of inner and outer type solutions.

2. Basic equations and boundary conditions

In terms of the modified polar co-ordinates (, 0) the equations of motion in dimensionless
form involving the stream function 61 and the vorticity ? are

a21C, a2qp =
2 + i+ e2 =0 (6)

af2 + a2-

a2 5 a2 R add a; a a\
52 a02 2 0f df aeW '(7)

where the Reynolds number R is based on the diameter of the cylinder and is given by
R = 2aU/v. Here, U is the uniform incoming stream and v the kinematic viscosity.

For symmetric flow the solutions of (6) and (7) are required in the semi-infinite
rectangular strip bounded by 5 2 0, 0 0 rr and are subject to the boundary conditions

I =f-=0 for =0, (8)ae

e -- i- sin 0 , e -- cos 0 , -0 as H--o , (9)ao

6p= =0 for 0 = 0, r. (10)

In the event of asymmetric flow resulting from a rotating circular cylinder, condition (8) is
replaced by

6=0, =-0 for =0, (11)
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where fl denotes the dimensionless angular velocity and is related to the dimensional angular
velocity o according to 1 = 2awo/U. Periodicity is also used instead of (10), namely

(, ) = (, 0 + 2r), C(5, 0) = (5, 0 + 2) (12)

and the equations are to be solved in the region 5 > 0, - r 0 < 7r.

3. Formulation in outer region

The mathematical details associated with the transformation (1)-(3) will now be addressed.
In the variables (z, 6) the vorticity transport equation (7), after omitting the term a2 /a 2

and approximating sin 0 = sin(24)kz) - 26kz and cos 0 1 + O(k2 z 2 ) for small z, takes on
the form

a + (20 - 2 a * a' (2 + at 0 .. (13)
a0 2 + k a k ) z

Here, i* refers to the perturbed stream function and is related to by

1
= ~q* + e e sin 0 = * + I sin(20kz) . (14)

The justification of the approximations made in arriving at (13) will be discussed later. It is
worth noting that all the non-linearities present in the Navier-Stokes equations are
preserved in (13).

By considering the limiting solution of (13) as z --> 0, Dennis [12] suggested an alternative
method for obtaining the asymptotic solution. In this limit (13) reduces to

2 + 2 a' + 2z a = ' (15)

and by separation of variables has fundamental solutions

n = -AZn+l,(4), , n = 0, 1, 2, ... , (16)

where the functions p/,(6) are defined by

2n((;) = e-+2/2 H () , (17)

Hn(6) being the Hermite polynomials. The functions n(4)) are orthogonal in the interval
(-0, co) and are normalized so that

n order for to have the proper behaviour as z1. we must have that A

In order for to have the proper be haviour as z-comes 0 we must have that A 0. Thus, the
leading term of the series becomes

(18)5- -Aiz2910(1) 
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where the constant A, is related to the drag coefficient C through

CDR
A 1 - 4C1/ 4 (19)

For small z, (18) is in complete agreement with Imai [11].
The limit point solutions (16) reveal that it is natural for the vorticity to be expanded in a

Hermite series in the outer region. Acting on this suggestion, we expand ; in the asymptotic
series

4(z, ) = -A 1z 2 e- 2 /2 E gn(Z) n() . (20)
n=l

The effect of this is to scale the vorticity and eliminate the dependence on k by reducing
(13) to a set of ordinary differential equations given by

(n - 1)
gn = Fn(Z) n = 1, 2,..., (21)

where the prime denotes differentiation with respect to z and the non-linear right-hand side,

Fn(z), is

Fn(Z) =-E { a n/I d d + i k I X a/gnt+ doz2 k J, }o

+- k f n-- d , n = 1, 2.... (22)

The parabolic nature of the problem in the far field is apparent by the resulting first-order
differential equations (21). These equations are subject to the conditions

g()=- al,, n = 1,2,..., (23)

where

tO1~~~~~~ if 0 n mfn~~~~(24)
mn = { 1 if mn (24)

Young [10], using a perturbative method, generated series solutions for the system of
differential equations (21) which are valid for small z.

The stream function equation (6) expressed in terms of qi* and the variables (z, 4)
becomes

a > -4Alk'e_4,/2 E gn(Z)An(O ) . (25)
a2 n=l

Here, we have neglected the term a21*/1a 2 . This equation can be integrated twice using the
properties of Hermite polynomials. For the case of symmetrical flow only odd solutions are
permissable and we impose the conditions

*(z, 0) = *(' 2kz = . (26)
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The asymptotic series for the perturbed stream function in the outer region then becomes

,*(z, 4)= V27r' 4 Ak2g,(z)(erf(> ) - 2kz ) -2Alk 2 e_ 2/ 2 j g2n-3(Z)l2-5(>)

(27)

where erf(4) designates the error function defined by

2 At 2

erf() = 7 J e - x dx. (28)

For asymmetric flow we invoke the condition of periodicity

'2kz) ) (Z;2kz) (29)

and set the remaining arbitrary function of z which can be added to trf*(z, 4>) equal to
-(CL/I7) In z as suggested by Imai [11]. Here, CL denotes the lift coefficient. This yields

tf*(z 4>) = V2r1/4Alk2gl(z)(erf() - 2kz 4 >)

- 2Ak 2 e 2 g C - n z. (30)
n=2 nn ) Ir

It is clear that (30) simplifies to (27) when CL = 0 and when n is odd. Also, in obtaining (27)
and (30) the approximations erf(7T/2kz) = 1 and exp(-2 /8k 2z2)tn_2 (*r/2kz) = 0 were used.
It is interesting to point out that although ¢f* is continuous at 4 = +7T/2kz in (30), a*/4la
and q/*l/az are not. Similarly, although 4* = 0 at = 7r/2kz in (27), a*/az is not zero.
These, however, pose no difficulty since they only appear in the integrals given by (22)
where they are multiplied by exponential factors present in the functions ,(4). The
exponential decay is given by exp(- 4 2 ) and is responsible for damping out any dis-
crepancies. Lastly, for small z, (27) reduces to

q'*(Z 4) C2( - erf()) (31)

while (30) collapses to

C 2kz ) \ C-
(Z' I) - 2 _(- erf(4)) -- In z, (32)

both of which are in full agreement with the results of Imai [11].

4. Method of solution for symmetric flow

We begin by discretizing the computational domain. The inner region bounded by 0 
e*, 0 0 < rT is reduced to a network of (N + 1) x (M + 1) grid points situated at

C,=ih i=0,1,. . . (33)
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Oj=jk, j=0,1,... ,M, (34)

where

h = *IN (35)

k = rIM. (36)

In the outer region the interval (0, z*) is divided into L + 1 equally spaced points given by

z i = ih z , i=O1,...,L (37)

with

hz = z*L . (38)

The method used to solve the governing equations for the case of a stationary cylinder is an
extension of the Dennis and Chang [5, 6] technique accommodating the outer region.

In the inner region, the stream function equation (6) is reduced to a set of ordinary
differential equations by expanding ¢i in the sine series

¢(, 0) = fn( ) sin n (39)
n=l

which automatically satisfies (10). Thus, (6) now becomes

fn-n 2 fn =-r() , n=1,2,..., (40)

where the prime denotes differentiation with respect to and r(6) is defined by

2 e2e f
= o sinnO d , n= 1,2.... (41)

Boundary conditions for fn can be obtained from (8)-(9) and are given by

fn(0) =f~(0) = 0, (42)

e-f'-ln , e-+f-8 1, as .--->. (43)

The differential equations (40) are solved by a marching algorithm employing Filon
quadrature. The details can be found in Dennis and Chang [5].

The vorticity transport equation (7) is solved by finite differences using the scheme
developed by Dennis [13] to ensure diagonal dominance. The surface vorticity can be
determined by inverting (41) and evaluating it at -= 0. This yields the expression

(0, ) = r(O) sin n . (44)
n=l

Along the boundary = * the gradient condition based on the asymptotics is used in the
form

)(*, 0)= ( h, 0) e-h/2 exp[- ee (1 - e - )(1- cos )] . (45)f(5 - T I (5" - h, e(4
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To complete the solution procedure for , another condition is necessary. This can be
obtained from the properties of the solutions of (40) and involve integrals given by

fOe e rn( () d = -2/,, n = 1, 2 ..... (46)

These integral conditions are exact and span the entire flow field from the cylinder surface to
infinity. They are appropriate conditions to use in this method because the whole flow field is
considered. They also play an important role in linking the inner and outer regions together
and can be rewritten as

A er(~) dE + 2 2nrn(z) dz = -2 8 ,n , n = 1,2..... (47)

Expressed this way, the contribution from each region is apparent.
In the outer region, using a sine series expansion for i* proves to be inadequate owing to

its limiting sawtooth behaviour. Instead, the asymptotic series (27) is used. The vorticity is
found by solving the set of equations given by (21). These differential equations are
integrated using a step-by-step procedure based on Filon integration and the trapezoidal
approximation. The stable direction of integration of these equations is in the negative z
direction from z = z* to z = 0. Initial conditions at z = z* are provided by decomposing the
vorticity at the edge of the inner region into a Hermite series. By means of this we obtain

g,(z*A( kz*3 /n f(* O)H(O) d , forn odd. (48)

This procedure can be tested by comparing the values resulting at z = 0 against the exact
theoretical ones given by (23).

Lastly, the expressions for r(z) are

2Ark g,(z) 2
rn(z) = ,(z)E f e 2 Hi( ) sin(2nkz) d , n = 1,2,.... (49)

In arriving at the above, the limits of integration -r/2kz, 7r/2kz were justifiably and
conveniently set to -, o, respectively. The numerical solution of (21) requires knowledge
of r(O) and F,(O). Using the asymptotic solutions, the analytical expressions

nCD
r,()=- -, n=l,2,... (50)

F,(0) =

for n odd

(51)

for n even

can be derived.
The computational procedure can now be discussed. After all infinite summations have
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been replaced by a finite number of terms and initial guesses supplied for a given R, then the
following steps are repeated until convergence on the drag coefficient is reached:

1. Calculate r(e) for n =1, 2,..., N in the inner region except at 5=0 and r(z) for
n = 1, 2,..., No throughout the outer region.

2. Determine rn(O) for n = 1, 2,..., No by enforcing the integral conditions and in doing so
compute the surface vorticity from (44); moderate under-relaxation must be applied.

3. Calculate throughout the inner region by finite differences.
4. Solve the differential equations (21) for g,(z), n = 1, 2,..., N to get the vorticity in the

outer region.
5. Repeat steps (1) to (4) a specified number of times.
6. Solve the differential equations (40) for f(e), n =1, 2,...,No to get ¢1 in the inner

region and update the expression for *(z, 4) in the outer region.
7. Compute CD and check whether convergence is reached; this completes one cycle of the

procedure.

Step (5) represents an inner iteration allowing for the fact that the equation for is
nonlinear and must be solved iteratively. Hence, it converges much more slowly than the
linear Poisson equation for i which is solved during each cycle of the procedure.

5. Extension to asymmetric flow

For asymmetric flow past a rotating circular cylinder the computational domain is discretized
as before with the exception that -r < 0 < rr and

Oj=jk, j=-M,..., M. (52)

Because the method of Dennis and Chang [5, 6] has not yet been successfully extended to
deal with steady asymmetrical flow, the equations of motion (6)-(7) are solved entirely by
finite-differences in the inner region using a Gauss-Seidel iterative procedure. The surface
vorticity is computed by a second-order finite-difference expression derived by taking a
Taylor series expansion of ¢i about the cylinder surface and making use of both conditions
(11) for ¢. This expression is given by

(0,0)= { (4(h, )- ((2h, )) h2 }/(1 + (53)~( 3 h2 h 1A t 3j (53)

After sweeping through all (N + 1) x (2M + 1) grid points a specified number of times, the
drag and lift coefficients are updated and inserted wherever necessary.

In the outer region f* is known from (30) and is responsible for coupling the two regions
as do the integral conditions in the symmetrical case. The vorticity, 5, is found by solving the
differential equations (21) subject to the initial condition at z = z*

I I
gn(z*) 3=2Ankz.3 2 -n , ',O)H dO * d, n=1,2... (54)

It must be remembered that in the case of asymmetrical flow all n in (21) must be retained.
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This then enables Fn(z) given by (22) to be updated. Convergence on the drag and lift
coefficients to a specified accuracy was adopted as the criterion for termination of the
procedures.

6. Results

Numerical solutions for symmetric flow were obtained for the range 1 R - 40. It became
more difficult to obtain convergence of the iterative procedures for higher R. This can be
explained by the observation that at around R = 40 the optimum position of the boundary
separating the two regions approaches the wake bubble. The vorticity behaves differently
inside the bubble from outside and the Hermite series is less satisfactory in representing the
vorticity there regardless of the number of terms retained. Constantly pushing the boundary
outside the growing wake bubble only provokes other problems resulting from the singular
nature of the vorticity as z = 0 is approached.

It was found that (5) was the more appropriate formula to govern the movement of the
boundary = S*. The use of (4) suffered from the drawback that the boundary moved in too
rapidly. After numerous trial runs the following parameter values were used: e* = 4, Ro = 5,
N x M = 70 x 60 and L = 20. Other parameter values are listed in Table 1, where No and N 1

denote the number of terms in the sine and Hermite series respectively and cw refers to the
relaxation parameter. With the number of terms shown in Table 1, the Hermite series
reproduced the vorticity at the edge of the inner region to five decimal places. Although we
have used the series truncation method we could equally have solved equation (13) by
numerical methods using a step-by-step procedure to advance the solution in the z direction.
However, the goal of the present work is to uncover the basic mathematical structure of the
far-field flow and to find an effective method of dealing with it as is done by the series
truncation method.

Numerical results and flow properties are documented in Table 2. Here, P0 (0) and P0 (ir)
refer to the rear and front stagnation point pressures, respectively. The pressure coefficient is
defined by

P(0 ) = 1 42 a + a de (55)-(+2 I- d E (55)

and the drag and lift values are given by

CD= + f (a - ) 0 sinOdO CL= R ( a)osdO . (56)

Table 1. Parameters used in the calculations

R No N, wo

1 20 5 0.05
5 20 5 0.05

10 20 10 0.05
20 30 10 0.05
30 30 10 0.05
40 40 15 0.025
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Table 2. Comparisons with existing results

R Authors CD PO(0) PO(O) lw 0,

1 Present 10.29 -2.693 3.918 - -
Takami and Keller (1969) 10.28 -2.719 3.905 -
Nieuwstadt and Keller (1973) 10.31 -2.928 3.730 -

5 Present 3.894 -0.887 1.839 -
Dennis and Chang (1970) 4.116 -1.044 1.872 -

10 Present 2.719 -0.623 1.477 0.519 29.1 °

Takami and Keller (1969) 2.750 -0.670 1.474 0.500 29.3 °

Dennis and Chang (1970) 2.846 -0.742 1.489 0.53 29.6'
Nieuwstadt and Keller (1973) 2.828 -0.692 1.500 0.434 28.0 °

20 Present 1.969 -0.540 1.264 1.775 43.2 °

Takami and Keller (1969) 2.024 -0.555 1.264 1.844 43.7°

Dennis and Chang (1970) 2.045 -0.589 1.269 1.88 43.7 °

Nieuwstadt and Keller (1973) 2.053 -0.582 1.274 1.786 43.4 °

Fornberg (1980) 2.000 -0.54 1.28 1.82 -
30 Present 1.673 -0.544 1.185 3.055 49.0 °

Takami and Keller (1969) 1.717 -0.530 1.184 3.223 49.6 °

Nieuwstadt and Keller (1973) 1.733 -0.556 1.177 3.086 49.4°

40 Present 1.451 -0.488 1.142 4.323 52.5 °

Takami and Keller (1969) 1.524 -0.512 1.141 4.650 53.6 °

Dennis and Chang (1970) 1.522 -0.509 1.144 4.69 53.8 °

Nieuwstadt and Keller (1973) 1.550 -0.554 1.117 4.357 53.3°

Fornberg (1980) 1.498 -0.46 1.14 4.48 -

Also, lw denotes the wake length measured from the rear of the cylinder to the end of the
separated region and 0 refers to the angle of separation where the surface vorticity vanishes.

As previously mentioned, several approximations in arriving at (13) and (25) were made.
These include the neglect of the terms a2C/a62 and a2 p*/a 2 and the retaining of only one
term in the expansion for sin 0. To account for these approximations a correction term was
added to the right-hand side of (21). This term includes the effects of O2 /8a2 and the three
terms in the expansion

4 333 4sin 0 = sin(20kz) - 20kz - 4 3k3 z + 4 b5kzS for small z

and is given by

5 2 I 2 3
C,(z) -2k2zgn- k zg-- k z gn

-E k Zg 2 I CIIly de +3n 

- (i + 5) j 02i do + 4 k2z2 f k
4l ii d4

+-j~2 jk22 f I 4 +y Z dO+ V2(i + 1)k2z 2 _ ' + I d J i 1 d

-- k2z2g 2+2k2Z2f 4_ 2 )

;{ 2(x/--T~~~f®

for n = 1, 2,.... (57)
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The inclusion of this correction renders the procedure essentially exact. It was observed that
adding this term barely changed the results and thus justifies the approximations. Also, the
various integrals appearing in (22), (49) and (57) involving Hermite polynomials all have

exact solutions and can be found in Gradshteyn and Ryzhik [14]. All other integrals were

evaluated numerically by Filon integration.
Comparisons of the present results with existing results in the literature are also made in

Table 2. The agreement is quite good. Another comparison comes from the estimation of the

critical Reynolds number, R c , at which separation first sets in. This corresponds to the value

of R which makes the sum

No

E nrn(O)
n=l

vanish. The present method predicts the critical Reynolds number to lie in the range

6.37 R - 6.38 and agrees well with the value of 6.2 predicted by Dennis and Chang [6].

Numerical solutions for asymmetric flow past a rotating circular cylinder were also

obtained for the Reynolds numbers R = 5 and 20 with rotation rates in the range 0 - Q - 0.5.

This problem was found to be much more sensitive than the symmetric case. The symmetric

solution was used as the initial guess for small fl which in turn was used as the initial guess

for the next higher rotation rate. Stepping fl in this manner accelerated the convergence of

the numerical procedure. In all cases, the grid size M x N= 60 x 80, the relaxation

parameter o = 0.05 and * = 5 (corresponding to approximately 150 radii) for R = 5 and 20

were found to be adequate. It was observed that attaching the outer region beyond the

boundary 5 = * had a negligible effect on the drag and lift coefficients. For the symmetrical

case, the correction brought about by the addition of the outer region was of the order of

5%. Table 3 compares drag and lift coefficients obtained by the present method with the

recent works of Badr et al. [15] and Ingham and Tang [16]. Good agreement is found for the

various rotation rates and Reynolds numbers. In fact the results are identical to all figures

quoted with those obtained by D'Alessio and Dennis [17] using a completely different model

of the Navier-Stokes equations.
Young [10] scales the vorticity and stream function so that they are 0(1) in the far field.

The asymptotic conditions of Imai are used at distances as far as 400 radii away. Ingham and

Tang [16], on the other hand, also consider the entire flow field by using the transformation

e = lIr, which maps r = - to e = 0. The function f= qI*/Ir is used in place of the perturbed

Table 3. Comparison of CL and CD for the rotating circular cylinder with existing results

R l Badr, Dennis Ingham and
and Young (1989) Tang (1990) Present

-CL CD -CL CD -CL CD

5 0.1 0.285 3.92 0.277 3.947 0.266 3.896
0.2 0.572 3.91 0.559 3.939 0.533 3.893

0.4 1.14 3.90 1.111 3.927 1.068 3.884

0.5 1.37 3.89 1.389 3.916 1.336 3.877

20 0.1 0.266 2.00 0.254 1.995 0.243 1.916
0.2 0.552 2.00 0.514 1.992 0.486 1.915

0.4 1.11 1.97 1.024 1.979 0.974 1.912

0.5 1.39 1.97 1.283 1.973 1.220 1.910
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stream function 4i* and the conditions imposed on f = 0 (or r = oo) are f = 0 and ; = 0. Both
of these authors also use a local h2 -accurate formula to compute the surface vorticity.

As a final note concerning the results, various tests were performed on the solutions
obtained. For example, g(z = 0), r(z = 0) and F,(z = 0) were calculated and compared
against the theoretical values given by (23), (50) and (51), respectively. Also, the values of
CD and CL for paths of integration near the cylinder surface were compared with those
computed round large contours in the outer region. Lastly, for the case of asymmetric flow
the periodicity of the surface pressure was also checked by investigating the difference
Po(r)- P0 (-' r). In all of these tests, the errors recorded were tolerable with the largest
error of the order of 5%.

7. Conclusion

An important feature associated with this numerical method is worth pointing out. The
solution in the outer region includes the effects of terms far beyond the range of the
asymptotic solution of Imai [11], which could be used as an alternative at the boundary

= *. In fact, this method implicitly enforces the asymptotic condition at infinity, where it
becomes exact. Hence, these solutions may be judged to be accurate and reliable. We note
that there are many ways of approaching the problem of matching the two regions and this
present paper makes a start in analysing the problem.

Calculations were not carried out to higher values of R because of poor convergence
properties of the iterations, which may well be associated with the positioning of the
boundary = - *. To proceed to higher Reynolds numbers would require finer grids in both
the inner and outer regions as well as the perfection of some of the techniques used. Further,
the substitution of another model for the inner region to better accommodate boundary-layer
theory may be in order. Such a model has already been suggested by D'Alessio and Dennis
[17]. Our main objective in this work is to propose a way of dealing with the structure of the
outer solution via equation (13) and to offer a numerical method of implementing it. Also, it
must be remembered that in practice steady-state flows past cylinders are limited to low
Reynolds numbers beyond which vortex shedding takes place. Moreover, from the in-
formation gained in the present study it may well be possible to proceed to higher values of
R, as Tang and Ingham [18] have certainly done in the case of flow past a rotating cylinder.

Lastly, we emphasize that this method applies to any cylinder cross section because it is
based on boundary-layer theory and the asymptotic solution, both of which make no
reference to a particular cross section. The circular cylinder was chosen as a trial case
because of its relative simplicity and also because of the abundance of results existing in the
literature available for comparison purposes. A similar type of method has been applied to
determine the flow parallel to a finite flat plate for Reynolds numbers up to 200 which has
succeeded in verifying the triple-deck structure at the trailing edge. We admit that the
method does require extra programming, but the domain decomposition is important in
recognizing the mathematical structure of the flow at large distances. It may be possible to
apply the method in three-dimensions provided an appropriate co-ordinate expansion can be
used since it depends, in effect, on a linearization of the equations of motion at large
distances. There is also the possibility of linearizing turbulent flow once a turbulence model
is given. All these questions are, however, dependent on future developments.
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